A JavaScript library for arbitrary-precision arithmetic.
See the README on GitHub for a quick-start introduction.
      In all examples below, var and semicolons are not shown, and if a commented-out
      value is in quotes it means toString has been called on the preceding expression.
    
BigNumber(value [, base]) ⇒ BigNumber
    value0, ±Infinity and
        NaN.
      15 significant digits are
        considered invalid (if ERRORS is true) as calling
        toString or valueOf on
        such numbers may not result in the intended value.
        console.log( 823456789123456.3 ); // 823456789123456.2
'0xff', are valid, as are
        string values with the octal and binary prefixs '0o' and '0b'.
        String values in octal literal form without the prefix will be interpreted as
        decimals, e.g. '011' is interpreted as 11, not 9.
      10 to 36, lower and/or upper case letters can be
        used to represent values from 10 to 35.
      a-z represents values from 10 to
        35, A-Z from 36 to 61, and
        $ and _ represent 62 and 63 respectively
        (this can be changed by editing the ALPHABET variable near the top of the
        source file).
      base2 to 64 inclusive
      value.base is omitted, or is null or undefined, base
        10 is assumed.
      Returns a new instance of a BigNumber object.
      If a base is specified, the value is rounded according to
      the current DECIMAL_PLACES and
      ROUNDING_MODE configuration.
    
      See Errors for the treatment of an invalid value or
      base.
    
x = new BigNumber(9)                       // '9'
y = new BigNumber(x)                       // '9'
// 'new' is optional if ERRORS is false
BigNumber(435.345)                         // '435.345'
new BigNumber('5032485723458348569331745.33434346346912144534543')
new BigNumber('4.321e+4')                  // '43210'
new BigNumber('-735.0918e-430')            // '-7.350918e-428'
new BigNumber(Infinity)                    // 'Infinity'
new BigNumber(NaN)                         // 'NaN'
new BigNumber('.5')                        // '0.5'
new BigNumber('+2')                        // '2'
new BigNumber(-10110100.1, 2)              // '-180.5'
new BigNumber(-0b10110100.1)               // '-180.5'
new BigNumber('123412421.234324', 5)       // '607236.557696'
new BigNumber('ff.8', 16)                  // '255.5'
new BigNumber('0xff.8')                    // '255.5'
    
      The following throws 'not a base 2 number' if
      ERRORS is true, otherwise it returns a BigNumber with value
      NaN.
    
new BigNumber(9, 2)
      The following throws 'number type has more than 15 significant digits' if
      errors is true, otherwise it returns a BigNumber with value
      96517860459076820.
    
new BigNumber(96517860459076817.4395)
      The following throws 'not a number' if ERRORS
      is true, otherwise it returns a BigNumber with value NaN.
    
new BigNumber('blurgh')
    A value is only rounded by the constructor if a base is specified.
BigNumber.config({ DECIMAL_PLACES: 5 })
new BigNumber(1.23456789)                  // '1.23456789'
new BigNumber(1.23456789, 10)              // '1.23457'
    The static methods of a BigNumber constructor.
.another([obj]) ⇒ BigNumber constructor
    obj: object
      Returns a new independent BigNumber constructor with configuration as described by
      obj (see config), or with the default
      configuration if obj is null or undefined.
    
BigNumber.config({ DECIMAL_PLACES: 5 })
BN = BigNumber.another({ DECIMAL_PLACES: 9 })
x = new BigNumber(1)
y = new BN(1)
x.div(3)                        // 0.33333
y.div(3)                        // 0.333333333
// BN = BigNumber.another({ DECIMAL_PLACES: 9 }) is equivalent to:
BN = BigNumber.another()
BN.config({ DECIMAL_PLACES: 9 })
    config([obj]) ⇒ object
      obj: object: an object that contains some or all of the following
      properties.
    
Configures the 'global' settings for this particular BigNumber constructor.
Note: the configuration can also be supplied as an argument list, see below.
DECIMAL_PLACES0 to 1e+9 inclusive20
      BigNumber.config({ DECIMAL_PLACES: 5 })
BigNumber.config(5)    // equivalent
      ROUNDING_MODE0 to 8 inclusive4 (ROUND_HALF_UP)
      round,
        toExponential,
        toFixed,
        toFormat and
        toPrecision.
      BigNumber.config({ ROUNDING_MODE: 0 })
BigNumber.config(null, BigNumber.ROUND_UP)    // equivalent
        EXPONENTIAL_AT0 to 1e+9 inclusive, or
        -1e+9 to 0 inclusive, integer
        0 to 1e+9 inclusive ][-7, 20]
      toString returns exponential notation.
      [-7, 20].
      BigNumber.config({ EXPONENTIAL_AT: 2 })
new BigNumber(12.3)         // '12.3'        e is only 1
new BigNumber(123)          // '1.23e+2'
new BigNumber(0.123)        // '0.123'       e is only -1
new BigNumber(0.0123)       // '1.23e-2'
BigNumber.config({ EXPONENTIAL_AT: [-7, 20] })
new BigNumber(123456789)    // '123456789'   e is only 8
new BigNumber(0.000000123)  // '1.23e-7'
// Almost never return exponential notation:
BigNumber.config({ EXPONENTIAL_AT: 1e+9 })
// Always return exponential notation:
BigNumber.config({ EXPONENTIAL_AT: 0 })
      EXPONENTIAL_AT, the toFixed method
        will always return a value in normal notation and the toExponential method
        will always return a value in exponential form.
      toString with a base argument, e.g. toString(10), will
        also always return normal notation.
      RANGE1 to 1e+9 inclusive, or
        -1e+9 to -1 inclusive, integer
        1 to 1e+9 inclusive ][-1e+9, 1e+9]
      Infinity and underflow to
        zero occurs.
      Infinity and those with a
        negative exponent of greater magnitude become zero.
      Infinity, use [-324, 308].
      BigNumber.config({ RANGE: 500 })
BigNumber.config().RANGE     // [ -500, 500 ]
new BigNumber('9.999e499')   // '9.999e+499'
new BigNumber('1e500')       // 'Infinity'
new BigNumber('1e-499')      // '1e-499'
new BigNumber('1e-500')      // '0'
BigNumber.config({ RANGE: [-3, 4] })
new BigNumber(99999)         // '99999'      e is only 4
new BigNumber(100000)        // 'Infinity'   e is 5
new BigNumber(0.001)         // '0.01'       e is only -3
new BigNumber(0.0001)        // '0'          e is -4
      9.999...e+1000000000.1e-1000000000.
      ERRORStrue, false, 0 or
        1.true
      ERRORS is false, no errors will be thrown.
      BigNumber.config({ ERRORS: false })CRYPTOtrue, false, 0 or
        1.false
      CRYPTO is set to true then the
        random method will generate random digits using
        crypto.getRandomValues in browsers that support it, or
        crypto.randomBytes if using a version of Node.js that supports it.
      CRYPTO to true will fail, and if ERRORS
        is true an exception will be thrown.
      CRYPTO is false then the source of randomness used will be
        Math.random (which is assumed to generate at least 30 bits of
        randomness).
      random.BigNumber.config({ CRYPTO: true })
BigNumber.config().CRYPTO       // true
BigNumber.random()              // 0.54340758610486147524
      MODULO_MODE0 to 9 inclusive1 (ROUND_DOWN)
      a mod n.q = a / n, is calculated according to the
        ROUNDING_MODE that corresponds to the chosen
        MODULO_MODE.
      r, is calculated as: r = a - n * q.| Property | Value | Description | 
|---|---|---|
| ROUND_UP | 0 | The remainder is positive if the dividend is negative, otherwise it is negative. | 
| ROUND_DOWN | 1 | 
              The remainder has the same sign as the dividend. This uses 'truncating division' and matches the behaviour of JavaScript's remainder operator %.
             | 
          
| ROUND_FLOOR | 3 | 
              The remainder has the same sign as the divisor. This matches Python's % operator.
             | 
          
| ROUND_HALF_EVEN | 6 | The IEEE 754 remainder function. | 
| EUCLID | 9 | 
               The remainder is always positive. Euclidian division: q = sign(n) * floor(a / abs(n))
              | 
           
modulo.BigNumber.config({ MODULO_MODE: BigNumber.EUCLID })
BigNumber.config({ MODULO_MODE: 9 })          // equivalent
      POW_PRECISION0 to 1e+9 inclusive.100
      0, the number of signifcant digits will not be limited.toPower.BigNumber.config({ POW_PRECISION: 100 })FORMATFORMAT object configures the format of the string returned by the
        toFormat method.
      FORMAT object that are
        recognised, and their default values.
      FORMAT object will not be checked for validity. The existing
         FORMAT object will simply be replaced by the object that is passed in.
         Note that all the properties shown below do not have to be included.
      toFormat for examples of usage.
BigNumber.config({
    FORMAT: {
        // the decimal separator
        decimalSeparator: '.',
        // the grouping separator of the integer part
        groupSeparator: ',',
        // the primary grouping size of the integer part
        groupSize: 3,
        // the secondary grouping size of the integer part
        secondaryGroupSize: 0,
        // the grouping separator of the fraction part
        fractionGroupSeparator: ' ',
        // the grouping size of the fraction part
        fractionGroupSize: 0
    }
});
      Returns an object with the above properties and their current values.
      If the value to be assigned to any of the above properties is null or
      undefined it is ignored.
    
See Errors for the treatment of invalid values.
BigNumber.config({
    DECIMAL_PLACES: 40,
    ROUNDING_MODE: BigNumber.ROUND_HALF_CEIL,
    EXPONENTIAL_AT: [-10, 20],
    RANGE: [-500, 500],
    ERRORS: true,
    CRYPTO: true,
    MODULO_MODE: BigNumber.ROUND_FLOOR,
    POW_PRECISION: 80,
    FORMAT: {
        groupSize: 3,
        groupSeparator: ' ',
        decimalSeparator: ','
    }
});
// Alternatively but equivalently (excluding FORMAT):
BigNumber.config( 40, 7, [-10, 20], 500, 1, 1, 3, 80 )
obj = BigNumber.config();
obj.ERRORS       // true
obj.RANGE        // [-500, 500]
    .max([arg1 [, arg2, ...]]) ⇒ BigNumber
    
      arg1, arg2, ...: number|string|BigNumber
      See BigNumber for further parameter details.
    
      Returns a BigNumber whose value is the maximum of arg1,
      arg2,... .
    
The argument to this method can also be an array of values.
The return value is always exact and unrounded.
x = new BigNumber('3257869345.0378653')
BigNumber.max(4e9, x, '123456789.9')          // '4000000000'
arr = [12, '13', new BigNumber(14)]
BigNumber.max(arr)                            // '14'
    .min([arg1 [, arg2, ...]]) ⇒ BigNumber
    
      arg1, arg2, ...: number|string|BigNumber
      See BigNumber for further parameter details.
    
      Returns a BigNumber whose value is the minimum of arg1,
      arg2,... .
    
The argument to this method can also be an array of values.
The return value is always exact and unrounded.
x = new BigNumber('3257869345.0378653')
BigNumber.min(4e9, x, '123456789.9')          // '123456789.9'
arr = [2, new BigNumber(-14), '-15.9999', -12]
BigNumber.min(arr)                            // '-15.9999'
    .random([dp]) ⇒ BigNumber
    dp: number: integer, 0 to 1e+9 inclusive
      Returns a new BigNumber with a pseudo-random value equal to or greater than 0 and
      less than 1.
    
      The return value will have dp decimal places (or less if trailing zeros are
      produced).
      If dp is omitted then the number of decimal places will default to the current
      DECIMAL_PLACES setting.
    
      Depending on the value of this BigNumber constructor's
      CRYPTO setting and the support for the
      crypto object in the host environment, the random digits of the return value are
      generated by either Math.random (fastest), crypto.getRandomValues
      (Web Cryptography API in recent browsers) or crypto.randomBytes (Node.js).
    
      If CRYPTO is true, i.e. one of the
      crypto methods is to be used, the value of a returned BigNumber should be
      cryptographically-secure and statistically indistinguishable from a random value.
    
BigNumber.config({ DECIMAL_PLACES: 10 })
BigNumber.random()              // '0.4117936847'
BigNumber.random(20)            // '0.78193327636914089009'
    
      The library's enumerated rounding modes are stored as properties of the constructor.
      (They are not referenced internally by the library itself.)
    
      Rounding modes 0 to 6 (inclusive) are the same as those of Java's
      BigDecimal class.
    
| Property | Value | Description | 
|---|---|---|
| ROUND_UP | 0 | Rounds away from zero | 
| ROUND_DOWN | 1 | Rounds towards zero | 
| ROUND_CEIL | 2 | Rounds towards Infinity | 
      
| ROUND_FLOOR | 3 | Rounds towards -Infinity | 
      
| ROUND_HALF_UP | 4 | 
          Rounds towards nearest neighbour. If equidistant, rounds away from zero  | 
      
| ROUND_HALF_DOWN | 5 | 
          Rounds towards nearest neighbour. If equidistant, rounds towards zero  | 
      
| ROUND_HALF_EVEN | 6 | 
          Rounds towards nearest neighbour. If equidistant, rounds towards even neighbour  | 
      
| ROUND_HALF_CEIL | 7 | 
          Rounds towards nearest neighbour. If equidistant, rounds towards Infinity
         | 
      
| ROUND_HALF_FLOOR | 8 | 
          Rounds towards nearest neighbour. If equidistant, rounds towards -Infinity
         | 
      
BigNumber.config({ ROUNDING_MODE: BigNumber.ROUND_CEIL })
BigNumber.config({ ROUNDING_MODE: 2 })     // equivalent
    The methods inherited by a BigNumber instance from its constructor's prototype object.
A BigNumber is immutable in the sense that it is not changed by its methods.
      The treatment of ±0, ±Infinity and NaN is
      consistent with how JavaScript treats these values.
    
      Many method names have a shorter alias.
      (Internally, the library always uses the shorter method names.)
    
.abs() ⇒ BigNumberReturns a BigNumber whose value is the absolute value, i.e. the magnitude, of the value of this BigNumber.
The return value is always exact and unrounded.
x = new BigNumber(-0.8) y = x.absoluteValue() // '0.8' z = y.abs() // '0.8'
.ceil() ⇒ BigNumber
      Returns a BigNumber whose value is the value of this BigNumber rounded to
      a whole number in the direction of positive Infinity.
    
x = new BigNumber(1.3) x.ceil() // '2' y = new BigNumber(-1.8) y.ceil() // '-1'
.cmp(n [, base]) ⇒ number
      n: number|string|BigNumber
      base: number
      See BigNumber for further parameter details.
    
| Returns | |
|---|---|
1 | 
        If the value of this BigNumber is greater than the value of n | 
      
-1 | 
        If the value of this BigNumber is less than the value of n | 
      
0 | 
        If this BigNumber and n have the same value | 
      
null | 
        If the value of either this BigNumber or n is NaN | 
      
x = new BigNumber(Infinity)
y = new BigNumber(5)
x.comparedTo(y)                 // 1
x.comparedTo(x.minus(1))        // 0
y.cmp(NaN)                      // null
y.cmp('110', 2)                 // -1
    .dp() ⇒ number
      Return the number of decimal places of the value of this BigNumber, or null if
      the value of this BigNumber is ±Infinity or NaN.
    
x = new BigNumber(123.45)
x.decimalPlaces()               // 2
y = new BigNumber('9.9e-101')
y.dp()                          // 102
    .div(n [, base]) ⇒ BigNumber
    
      n: number|string|BigNumber
      base: number
      See BigNumber for further parameter details.
    
      Returns a BigNumber whose value is the value of this BigNumber divided by
      n, rounded according to the current
      DECIMAL_PLACES and
      ROUNDING_MODE configuration.
    
x = new BigNumber(355) y = new BigNumber(113) x.dividedBy(y) // '3.14159292035398230088' x.div(5) // '71' x.div(47, 16) // '5'
.divToInt(n [, base]) ⇒
      BigNumber
    
      n: number|string|BigNumber
      base: number
      See BigNumber for further parameter details.
    
      Return a BigNumber whose value is the integer part of dividing the value of this BigNumber by
      n.
    
x = new BigNumber(5)
y = new BigNumber(3)
x.dividedToIntegerBy(y)         // '1'
x.divToInt(0.7)                 // '7'
x.divToInt('0.f', 16)           // '5'
    .eq(n [, base]) ⇒ boolean
      n: number|string|BigNumber
      base: number
      See BigNumber for further parameter details.
    
      Returns true if the value of this BigNumber equals the value of n,
      otherwise returns false.
      As with JavaScript, NaN does not equal NaN.
    
Note: This method uses the comparedTo method internally.
0 === 1e-324                    // true
x = new BigNumber(0)
x.equals('1e-324')              // false
BigNumber(-0).eq(x)             // true  ( -0 === 0 )
BigNumber(255).eq('ff', 16)     // true
y = new BigNumber(NaN)
y.equals(NaN)                   // false
    .floor() ⇒ BigNumber
      Returns a BigNumber whose value is the value of this BigNumber rounded to a whole number in
      the direction of negative Infinity.
    
x = new BigNumber(1.8) x.floor() // '1' y = new BigNumber(-1.3) y.floor() // '-2'
.gt(n [, base]) ⇒ boolean
      n: number|string|BigNumber
      base: number
      See BigNumber for further parameter details.
    
      Returns true if the value of this BigNumber is greater than the value of
      n, otherwise returns false.
    
Note: This method uses the comparedTo method internally.
0.1 > (0.3 - 0.2) // true x = new BigNumber(0.1) x.greaterThan(BigNumber(0.3).minus(0.2)) // false BigNumber(0).gt(x) // false BigNumber(11, 3).gt(11.1, 2) // true
.gte(n [, base]) ⇒ boolean
    
      n: number|string|BigNumber
      base: number
      See BigNumber for further parameter details.
    
      Returns true if the value of this BigNumber is greater than or equal to the value
      of n, otherwise returns false.
    
Note: This method uses the comparedTo method internally.
(0.3 - 0.2) >= 0.1                   // false
x = new BigNumber(0.3).minus(0.2)
x.greaterThanOrEqualTo(0.1)          // true
BigNumber(1).gte(x)                  // true
BigNumber(10, 18).gte('i', 36)       // true
    .isFinite() ⇒ boolean
      Returns true if the value of this BigNumber is a finite number, otherwise
      returns false.
    
      The only possible non-finite values of a BigNumber are NaN, Infinity
      and -Infinity.
    
x = new BigNumber(1) x.isFinite() // true y = new BigNumber(Infinity) y.isFinite() // false
      Note: The native method isFinite() can be used if
      n <= Number.MAX_VALUE.
    
.isInt() ⇒ boolean
      Returns true if the value of this BigNumber is a whole number, otherwise returns
      false.
    
x = new BigNumber(1) x.isInteger() // true y = new BigNumber(123.456) y.isInt() // false
.isNaN() ⇒ boolean
      Returns true if the value of this BigNumber is NaN, otherwise
      returns false.
    
x = new BigNumber(NaN)
x.isNaN()                       // true
y = new BigNumber('Infinity')
y.isNaN()                       // false
    Note: The native method isNaN() can also be used.
.isNeg() ⇒ boolean
      Returns true if the value of this BigNumber is negative, otherwise returns
      false.
    
x = new BigNumber(-0) x.isNegative() // true y = new BigNumber(2) y.isNeg() // false
Note: n < 0 can be used if n <= -Number.MIN_VALUE.
.isZero() ⇒ boolean
      Returns true if the value of this BigNumber is zero or minus zero, otherwise
      returns false.
    
x = new BigNumber(-0) x.isZero() && x.isNeg() // true y = new BigNumber(Infinity) y.isZero() // false
Note: n == 0 can be used if n >= Number.MIN_VALUE.
.lt(n [, base]) ⇒ boolean
      n: number|string|BigNumber
      base: number
      See BigNumber for further parameter details.
    
      Returns true if the value of this BigNumber is less than the value of
      n, otherwise returns false.
    
Note: This method uses the comparedTo method internally.
(0.3 - 0.2) < 0.1 // true x = new BigNumber(0.3).minus(0.2) x.lessThan(0.1) // false BigNumber(0).lt(x) // true BigNumber(11.1, 2).lt(11, 3) // true
.lte(n [, base]) ⇒ boolean
    
      n: number|string|BigNumber
      base: number
      See BigNumber for further parameter details.
    
      Returns true if the value of this BigNumber is less than or equal to the value of
      n, otherwise returns false.
    
Note: This method uses the comparedTo method internally.
0.1 <= (0.3 - 0.2)                                // false
x = new BigNumber(0.1)
x.lessThanOrEqualTo(BigNumber(0.3).minus(0.2))    // true
BigNumber(-1).lte(x)                              // true
BigNumber(10, 18).lte('i', 36)                    // true
    .minus(n [, base]) ⇒ BigNumber
    
      n: number|string|BigNumber
      base: number
      See BigNumber for further parameter details.
    
Returns a BigNumber whose value is the value of this BigNumber minus n.
The return value is always exact and unrounded.
0.3 - 0.1 // 0.19999999999999998 x = new BigNumber(0.3) x.minus(0.1) // '0.2' x.minus(0.6, 20) // '0'
.mod(n [, base]) ⇒ BigNumber
      n: number|string|BigNumber
      base: number
      See BigNumber for further parameter details.
    
      Returns a BigNumber whose value is the value of this BigNumber modulo n, i.e.
      the integer remainder of dividing this BigNumber by n.
    
      The value returned, and in particular its sign, is dependent on the value of the
      MODULO_MODE setting of this BigNumber constructor.
      If it is 1 (default value), the result will have the same sign as this BigNumber,
      and it will match that of Javascript's % operator (within the limits of double
      precision) and BigDecimal's remainder method.
    
The return value is always exact and unrounded.
      See MODULO_MODE for a description of the other
      modulo modes.
    
1 % 0.9                         // 0.09999999999999998
x = new BigNumber(1)
x.modulo(0.9)                   // '0.1'
y = new BigNumber(33)
y.mod('a', 33)                  // '3'
    .neg() ⇒ BigNumber
      Returns a BigNumber whose value is the value of this BigNumber negated, i.e. multiplied by
      -1.
    
x = new BigNumber(1.8) x.negated() // '-1.8' y = new BigNumber(-1.3) y.neg() // '1.3'
.plus(n [, base]) ⇒ BigNumber
      n: number|string|BigNumber
      base: number
      See BigNumber for further parameter details.
    
Returns a BigNumber whose value is the value of this BigNumber plus n.
The return value is always exact and unrounded.
0.1 + 0.2                       // 0.30000000000000004
x = new BigNumber(0.1)
y = x.plus(0.2)                 // '0.3'
BigNumber(0.7).plus(x).plus(y)  // '1'
x.plus('0.1', 8)                // '0.225'
    .sd([z]) ⇒ number
      z: boolean|number: true, false, 0
      or 1
    
Returns the number of significant digits of the value of this BigNumber.
      If z is true or 1 then any trailing zeros of the
      integer part of a number are counted as significant digits, otherwise they are not.
    
x = new BigNumber(1.234) x.precision() // 4 y = new BigNumber(987000) y.sd() // 3 y.sd(true) // 6
.round([dp [, rm]]) ⇒ BigNumber
      dp: number: integer, 0 to 1e+9 inclusive
      rm: number: integer, 0 to 8 inclusive
    
      Returns a BigNumber whose value is the value of this BigNumber rounded by rounding mode
      rm to a maximum of dp decimal places.
    
      if dp is omitted, or is null or undefined, the
      return value is n rounded to a whole number.
      if rm is omitted, or is null or undefined,
      ROUNDING_MODE is used.
    
      See Errors for the treatment of other non-integer or out of range
      dp or rm values.
    
x = 1234.56 Math.round(x) // 1235 y = new BigNumber(x) y.round() // '1235' y.round(1) // '1234.6' y.round(2) // '1234.56' y.round(10) // '1234.56' y.round(0, 1) // '1234' y.round(0, 6) // '1235' y.round(1, 1) // '1234.5' y.round(1, BigNumber.ROUND_HALF_EVEN) // '1234.6' y // '1234.56'
.shift(n) ⇒ BigNumber
      n: number: integer,
      -9007199254740991 to 9007199254740991 inclusive
    
      Returns a BigNumber whose value is the value of this BigNumber shifted n places.
    
      The shift is of the decimal point, i.e. of powers of ten, and is to the left if n
      is negative or to the right if n is positive.
    
The return value is always exact and unrounded.
x = new BigNumber(1.23) x.shift(3) // '1230' x.shift(-3) // '0.00123'
.sqrt() ⇒ BigNumber
      Returns a BigNumber whose value is the square root of the value of this BigNumber,
      rounded according to the current
      DECIMAL_PLACES and
      ROUNDING_MODE configuration.
    
The return value will be correctly rounded, i.e. rounded as if the result was first calculated to an infinite number of correct digits before rounding.
x = new BigNumber(16) x.squareRoot() // '4' y = new BigNumber(3) y.sqrt() // '1.73205080756887729353'
.times(n [, base]) ⇒ BigNumber
      n: number|string|BigNumber
      base: number
      See BigNumber for further parameter details.
    
Returns a BigNumber whose value is the value of this BigNumber times n.
The return value is always exact and unrounded.
0.6 * 3                         // 1.7999999999999998
x = new BigNumber(0.6)
y = x.times(3)                  // '1.8'
BigNumber('7e+500').times(y)    // '1.26e+501'
x.times('-a', 16)               // '-6'
    .toDigits([sd [, rm]]) ⇒ BigNumber
    
      sd: number: integer, 1 to 1e+9 inclusive.
      rm: number: integer, 0 to 8 inclusive.
    
      Returns a BigNumber whose value is the value of this BigNumber rounded to sd
      significant digits using rounding mode rm.
    
      If sd is omitted or is null or undefined, the return
      value will not be rounded.
      If rm is omitted or is null or undefined,
      ROUNDING_MODE will be used.
    
      See Errors for the treatment of other non-integer or out of range
      sd or rm values.
    
BigNumber.config({ precision: 5, rounding: 4 })
x = new BigNumber(9876.54321)
x.toDigits()                          // '9876.5'
x.toDigits(6)                         // '9876.54'
x.toDigits(6, BigNumber.ROUND_UP)     // '9876.55'
x.toDigits(2)                         // '9900'
x.toDigits(2, 1)                      // '9800'
x                                     // '9876.54321'
    .toExponential([dp [, rm]]) ⇒ string
    
      dp: number: integer, 0 to 1e+9 inclusive
      rm: number: integer, 0 to 8 inclusive
    
      Returns a string representing the value of this BigNumber in exponential notation rounded
      using rounding mode rm to dp decimal places, i.e with one digit
      before the decimal point and dp digits after it.
    
      If the value of this BigNumber in exponential notation has fewer than dp fraction
      digits, the return value will be appended with zeros accordingly.
    
      If dp is omitted, or is null or undefined, the number
      of digits after the decimal point defaults to the minimum number of digits necessary to
      represent the value exactly.
      If rm is omitted or is null or undefined,
      ROUNDING_MODE is used.
    
      See Errors for the treatment of other non-integer or out of range
      dp or rm values.
    
x = 45.6 y = new BigNumber(x) x.toExponential() // '4.56e+1' y.toExponential() // '4.56e+1' x.toExponential(0) // '5e+1' y.toExponential(0) // '5e+1' x.toExponential(1) // '4.6e+1' y.toExponential(1) // '4.6e+1' y.toExponential(1, 1) // '4.5e+1' (ROUND_DOWN) x.toExponential(3) // '4.560e+1' y.toExponential(3) // '4.560e+1'
.toFixed([dp [, rm]]) ⇒ string
    
      dp: number: integer, 0 to 1e+9 inclusive
      rm: number: integer, 0 to 8 inclusive
    
      Returns a string representing the value of this BigNumber in normal (fixed-point) notation
      rounded to dp decimal places using rounding mode rm.
    
      If the value of this BigNumber in normal notation has fewer than dp fraction
      digits, the return value will be appended with zeros accordingly.
    
      Unlike Number.prototype.toFixed, which returns exponential notation if a number
      is greater or equal to 1021, this method will always return normal
      notation.
    
      If dp is omitted or is null or undefined, the return
      value will be unrounded and in normal notation. This is also unlike
      Number.prototype.toFixed, which returns the value to zero decimal places.
      It is useful when fixed-point notation is required and the current
      EXPONENTIAL_AT setting causes
      toString to return exponential notation.
      If rm is omitted or is null or undefined,
      ROUNDING_MODE is used.
    
      See Errors for the treatment of other non-integer or out of range
      dp or rm values.
    
x = 3.456 y = new BigNumber(x) x.toFixed() // '3' y.toFixed() // '3.456' y.toFixed(0) // '3' x.toFixed(2) // '3.46' y.toFixed(2) // '3.46' y.toFixed(2, 1) // '3.45' (ROUND_DOWN) x.toFixed(5) // '3.45600' y.toFixed(5) // '3.45600'
.toFormat([dp [, rm]]) ⇒ string
    
      dp: number: integer, 0 to 1e+9 inclusive
      rm: number: integer, 0 to 8 inclusive
    
      Returns a string representing the value of this BigNumber in normal (fixed-point) notation
      rounded to dp decimal places using rounding mode rm, and formatted
      according to the properties of the FORMAT object.
    
      See the examples below for the properties of the
      FORMAT object, their types and their usage.
    
      If dp is omitted or is null or undefined, then the
      return value is not rounded to a fixed number of decimal places.
      If rm is omitted or is null or undefined,
      ROUNDING_MODE is used.
    
      See Errors for the treatment of other non-integer or out of range
      dp or rm values.
    
format = {
    decimalSeparator: '.',
    groupSeparator: ',',
    groupSize: 3,
    secondaryGroupSize: 0,
    fractionGroupSeparator: ' ',
    fractionGroupSize: 0
}
BigNumber.config({ FORMAT: format })
x = new BigNumber('123456789.123456789')
x.toFormat()                    // '123,456,789.123456789'
x.toFormat(1)                   // '123,456,789.1'
// If a reference to the object assigned to FORMAT has been retained,
// the format properties can be changed directly
format.groupSeparator = ' '
format.fractionGroupSize = 5
x.toFormat()                    // '123 456 789.12345 6789'
BigNumber.config({
    FORMAT: {
        decimalSeparator = ',',
        groupSeparator = '.',
        groupSize = 3,
        secondaryGroupSize = 2
    }
})
x.toFormat(6)                   // '12.34.56.789,123'
    .toFraction([max]) ⇒ [string, string]
    
      max: number|string|BigNumber: integer >= 1 and <
      Infinity
    
      Returns a string array representing the value of this BigNumber as a simple fraction with an
      integer numerator and an integer denominator. The denominator will be a positive non-zero
      value less than or equal to max.
    
      If a maximum denominator, max, is not specified, or is null or
      undefined, the denominator will be the lowest value necessary to represent the
      number exactly.
    
      See Errors for the treatment of other non-integer or out of range
      max values.
    
x = new BigNumber(1.75)
x.toFraction()                  // '7, 4'
pi = new BigNumber('3.14159265358')
pi.toFraction()                 // '157079632679,50000000000'
pi.toFraction(100000)           // '312689, 99532'
pi.toFraction(10000)            // '355, 113'
pi.toFraction(100)              // '311, 99'
pi.toFraction(10)               // '22, 7'
pi.toFraction(1)                // '3, 1'
    .toJSON() ⇒ stringAs valueOf.
x = new BigNumber('177.7e+457')
y = new BigNumber(235.4325)
z = new BigNumber('0.0098074')
// Serialize an array of three BigNumbers
str = JSON.stringify( [x, y, z] )
// "["1.777e+459","235.4325","0.0098074"]"
// Return an array of three BigNumbers
JSON.parse(str, function (key, val) {
    return key === '' ? val : new BigNumber(val)
})
    .toNumber() ⇒ numberReturns the value of this BigNumber as a JavaScript number primitive.
Type coercion with, for example, the unary plus operator will also work, except that a BigNumber with the value minus zero will be converted to positive zero.
x = new BigNumber(456.789)
x.toNumber()                    // 456.789
+x                              // 456.789
y = new BigNumber('45987349857634085409857349856430985')
y.toNumber()                    // 4.598734985763409e+34
z = new BigNumber(-0)
1 / +z                          // Infinity
1 / z.toNumber()                // -Infinity
    .pow(n [, m]) ⇒ BigNumber
      n: number: integer,
      -9007199254740991 to 9007199254740991 inclusive
      m: number|string|BigNumber
    
      Returns a BigNumber whose value is the value of this BigNumber raised to the power
      n, and optionally modulo a modulus m.
    
      If n is negative the result is rounded according to the current
      DECIMAL_PLACES and
      ROUNDING_MODE configuration.
    
      If n is not an integer or is out of range:
    
      If ERRORS is true a BigNumber Error is thrown,
      else if n is greater than 9007199254740991, it is interpreted as
      Infinity;
      else if n is less than -9007199254740991, it is interpreted as
      -Infinity;
      else if n is otherwise a number, it is truncated to an integer;
      else it is interpreted as NaN.
    
      As the number of digits of the result of the power operation can grow so large so quickly,
      e.g. 123.45610000 has over 50000 digits, the number of significant
      digits calculated is limited to the value of the
      POW_PRECISION setting (default value:
      100) unless a modulus m is specified.
    
      Set POW_PRECISION to 0 for an
      unlimited number of significant digits to be calculated (this will cause the method to slow
      dramatically for larger exponents).
    
      Negative exponents will be calculated to the number of decimal places specified by
      DECIMAL_PLACES (but not to more than
      POW_PRECISION significant digits).
    
      If m is specified and the value of m, n and this
      BigNumber are positive integers, then a fast modular exponentiation algorithm is used,
      otherwise if any of the values is not a positive integer the operation will simply be
      performed as x.toPower(n).modulo(m) with a 
      POW_PRECISION of 0.
    
Math.pow(0.7, 2) // 0.48999999999999994 x = new BigNumber(0.7) x.toPower(2) // '0.49' BigNumber(3).pow(-2) // '0.11111111111111111111'
.toPrecision([sd [, rm]]) ⇒ string
    
      sd: number: integer, 1 to 1e+9 inclusive
      rm: number: integer, 0 to 8 inclusive
    
      Returns a string representing the value of this BigNumber rounded to sd
      significant digits using rounding mode rm.
    
      If sd is less than the number of digits necessary to represent the integer part
      of the value in normal (fixed-point) notation, then exponential notation is used.
    
      If sd is omitted, or is null or undefined, then the
      return value is the same as n.toString().
      If rm is omitted or is null or undefined,
      ROUNDING_MODE is used.
    
      See Errors for the treatment of other non-integer or out of range
      sd or rm values.
    
x = 45.6 y = new BigNumber(x) x.toPrecision() // '45.6' y.toPrecision() // '45.6' x.toPrecision(1) // '5e+1' y.toPrecision(1) // '5e+1' y.toPrecision(2, 0) // '4.6e+1' (ROUND_UP) y.toPrecision(2, 1) // '4.5e+1' (ROUND_DOWN) x.toPrecision(5) // '45.600' y.toPrecision(5) // '45.600'
.toString([base]) ⇒ stringbase: number: integer, 2 to 64 inclusive
      Returns a string representing the value of this BigNumber in the specified base, or base
      10 if base is omitted or is null or
      undefined.
    
      For bases above 10, values from 10 to 35 are
      represented by a-z (as with Number.prototype.toString),
      36 to 61 by A-Z, and 62 and
      63 by $ and _ respectively.
    
      If a base is specified the value is rounded according to the current
      DECIMAL_PLACES
      and ROUNDING_MODE configuration.
    
      If a base is not specified, and this BigNumber has a positive
      exponent that is equal to or greater than the positive component of the
      current EXPONENTIAL_AT setting,
      or a negative exponent equal to or less than the negative component of the
      setting, then exponential notation is returned.
    
If base is null or undefined it is ignored.
      See Errors for the treatment of other non-integer or out of range
      base values.
    
x = new BigNumber(750000)
x.toString()                    // '750000'
BigNumber.config({ EXPONENTIAL_AT: 5 })
x.toString()                    // '7.5e+5'
y = new BigNumber(362.875)
y.toString(2)                   // '101101010.111'
y.toString(9)                   // '442.77777777777777777778'
y.toString(32)                  // 'ba.s'
BigNumber.config({ DECIMAL_PLACES: 4 });
z = new BigNumber('1.23456789')
z.toString()                    // '1.23456789'
z.toString(10)                  // '1.2346'
    .trunc() ⇒ BigNumberReturns a BigNumber whose value is the value of this BigNumber truncated to a whole number.
x = new BigNumber(123.456) x.truncated() // '123' y = new BigNumber(-12.3) y.trunc() // '-12'
.valueOf() ⇒ string
      As toString, but does not accept a base argument and includes the minus sign
      for negative zero.
    
x = new BigNumber('-0')
x.toString()                    // '0'
x.valueOf()                     // '-0'
y = new BigNumber('1.777e+457')
y.valueOf()                     // '1.777e+457'
    A BigNumber is an object with three properties:
| Property | Description | Type | Value | 
|---|---|---|---|
| c | coefficient* | number[] | 
         Array of base 1e14 numbers | 
      
| e | exponent | number | Integer, -1000000000 to 1000000000 inclusive | 
      
| s | sign | number | -1 or 1 | 
      
*significand
The value of any of the three properties may also be null. 
      From v2.0.0 of this library, the value of the coefficient of a BigNumber is stored in a
      normalised base 100000000000000 floating point format, as opposed to the base
      10 format used in v1.x.x
    
This change means the properties of a BigNumber are now best considered to be read-only. Previously it was acceptable to change the exponent of a BigNumber by writing to its exponent property directly, but this is no longer recommended as the number of digits in the first element of the coefficient array is dependent on the exponent, so the coefficient would also need to be altered.
Note that, as with JavaScript numbers, the original exponent and fractional trailing zeros are not necessarily preserved.
x = new BigNumber(0.123)              // '0.123'
x.toExponential()                     // '1.23e-1'
x.c                                   // '1,2,3'
x.e                                   // -1
x.s                                   // 1
y = new Number(-123.4567000e+2)       // '-12345.67'
y.toExponential()                     // '-1.234567e+4'
z = new BigNumber('-123.4567000e+2')  // '-12345.67'
z.toExponential()                     // '-1.234567e+4'
z.c                                   // '1,2,3,4,5,6,7'
z.e                                   // 4
z.s                                   // -1
    
      The table below shows how ±0, NaN and
      ±Infinity are stored.
    
| c | e | s | |
|---|---|---|---|
| ±0 | [0] | 
        0 | 
        ±1 | 
      
| NaN | null | 
        null | 
        null | 
      
| ±Infinity | null | 
        null | 
        ±1 | 
      
x = new Number(-0) // 0 1 / x == -Infinity // true y = new BigNumber(-0) // '0' y.c // '0' ( [0].toString() ) y.e // 0 y.s // -1
      The errors that are thrown are generic Error objects with name
      BigNumber Error.
    
      The table below shows the errors that may be thrown if ERRORS is
      true, and the action taken if ERRORS is false.
    
| Method(s) | ERRORS: true Throw BigNumber Error  | 
        ERRORS: false Action on invalid argument  | 
      
|---|---|---|
          
            BigNumber | 
        number type has more than 15 significant digits  | 
        Accept. | 
| not a base... number | Substitute NaN. | 
      |
| base not an integer | Truncate to integer. Ignore if not a number.  | 
      |
| base out of range | Ignore. | |
| not a number* | Substitute NaN. | 
      |
another | 
        not an object | Ignore. | 
config | 
        DECIMAL_PLACES not an integer | 
        Truncate to integer. Ignore if not a number.  | 
      
DECIMAL_PLACES out of range | 
        Ignore. | |
ROUNDING_MODE not an integer | 
        Truncate to integer. Ignore if not a number.  | 
      |
ROUNDING_MODE out of range | 
        Ignore. | |
EXPONENTIAL_AT not an integeror not [integer, integer]  | 
        Truncate to integer(s). Ignore if not number(s).  | 
      |
EXPONENTIAL_AT out of rangeor not [negative, positive]  | 
        Ignore. | |
RANGE not an integeror not [integer, integer]  | 
         Truncate to integer(s). Ignore if not number(s).  | 
      |
RANGE cannot be zero | 
        Ignore. | |
RANGE out of rangeor not [negative, positive]  | 
        Ignore. | |
ERRORS not a booleanor binary digit  | 
        Ignore. | |
CRYPTO not a booleanor binary digit  | 
        Ignore. | |
CRYPTO crypto unavailable | 
        Ignore. | |
MODULO_MODE not an integer | 
        Truncate to integer. Ignore if not a number.  | 
      |
MODULO_MODE out of range | 
        Ignore. | |
POW_PRECISION not an integer | 
        Truncate to integer. Ignore if not a number.  | 
      |
POW_PRECISION out of range | 
        Ignore. | |
FORMAT not an object | 
        Ignore. | |
precision | 
        argument not a boolean or binary digit  | 
        Ignore. | 
round | 
        decimal places not an integer | Truncate to integer. Ignore if not a number.  | 
      
| decimal places out of range | Ignore. | |
| rounding mode not an integer | Truncate to integer. Ignore if not a number.  | 
      |
| rounding mode out of range | Ignore. | |
shift | 
        argument not an integer | Truncate to integer. Ignore if not a number.  | 
      
| argument out of range | Substitute ±Infinity.
       | |
          toExponentialtoFixedtoFormat
         | 
        decimal places not an integer | Truncate to integer. Ignore if not a number.  | 
      
| decimal places out of range | Ignore. | |
| rounding mode not an integer | Truncate to integer. Ignore if not a number.  | 
      |
| rounding mode out of range | Ignore. | |
toFraction | 
        max denominator not an integer | Truncate to integer. Ignore if not a number.  | 
      
| max denominator out of range | Ignore. | |
          toDigitstoPrecision
         | 
        precision not an integer | Truncate to integer. Ignore if not a number.  | 
      
| precision out of range | Ignore. | |
| rounding mode not an integer | Truncate to integer. Ignore if not a number.  | 
      |
| rounding mode out of range | Ignore. | |
toPower | 
        exponent not an integer | Truncate to integer. Substitute NaN if not a number. | 
      
| exponent out of range | Substitute ±Infinity.
         | 
      |
toString | 
        base not an integer | Truncate to integer. Ignore if not a number.  | 
      
| base out of range | Ignore. | 
*No error is thrown if the value is NaN or 'NaN'.
The message of a BigNumber Error will also contain the name of the method from which the error originated.
To determine if an exception is a BigNumber Error:
try {
    // ...
} catch (e) {
    if ( e instanceof Error && e.name == 'BigNumber Error' ) {
        // ...
    }
}
    Some arbitrary-precision libraries retain trailing fractional zeros as they can indicate the precision of a value. This can be useful but the results of arithmetic operations can be misleading.
x = new BigDecimal("1.0")
y = new BigDecimal("1.1000")
z = x.add(y)                      // 2.1000
x = new BigDecimal("1.20")
y = new BigDecimal("3.45000")
z = x.multiply(y)                 // 4.1400000
    To specify the precision of a value is to specify that the value lies within a certain range.
      In the first example, x has a value of 1.0. The trailing zero shows
      the precision of the value, implying that it is in the range 0.95 to
      1.05. Similarly, the precision indicated by the trailing zeros of y
      indicates that the value is in the range 1.09995 to 1.10005.
    
      If we  add the two lowest values in the ranges we have, 0.95 + 1.09995 = 2.04995,
      and if we add the two highest values we have, 1.05 + 1.10005 = 2.15005, so the
      range of the result of the addition implied by the precision of its operands is
      2.04995 to 2.15005.
    
      The result given by BigDecimal of 2.1000 however, indicates that the value is in
      the range 2.09995 to 2.10005 and therefore the precision implied by
      its trailing zeros may be misleading.
    
      In the second example, the true range is 4.122744 to 4.157256 yet
      the BigDecimal answer of 4.1400000 indicates a range of 4.13999995
      to  4.14000005. Again, the precision implied by the trailing zeros may be
      misleading.
    
      This library, like binary floating point and most calculators, does not retain trailing
      fractional zeros. Instead, the toExponential, toFixed and
      toPrecision methods enable trailing zeros to be added if and when required.