/** * Copyright (c) 2015 Guyon Roche * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions:

* * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ "use strict"; module.exports = { nearestNeighbor: function(src, dst, options) { var wSrc = src.width; var hSrc = src.height; //console.log("wSrc="+wSrc + ", hSrc="+hSrc); var wDst = dst.width; var hDst = dst.height; //console.log("wDst="+wDst + ", hDst="+hDst); var bufSrc = src.data; var bufDst = dst.data; for (var i = 0; i < hDst; i++) { for (var j = 0; j < wDst; j++) { var posDst = (i * wDst + j) * 4; var iSrc = Math.round(i * hSrc / hDst); var jSrc = Math.round(j * wSrc / wDst); var posSrc = (iSrc * wSrc + jSrc) * 4; bufDst[posDst++] = bufSrc[posSrc++]; bufDst[posDst++] = bufSrc[posSrc++]; bufDst[posDst++] = bufSrc[posSrc++]; bufDst[posDst++] = bufSrc[posSrc++]; } } }, bilinearInterpolation: function(src, dst, options) { var wSrc = src.width; var hSrc = src.height; //console.log("wSrc="+wSrc + ", hSrc="+hSrc); var wDst = dst.width; var hDst = dst.height; //console.log("wDst="+wDst + ", hDst="+hDst); var bufSrc = src.data; var bufDst = dst.data; var interpolate = function(k, kMin, vMin, kMax, vMax) { // special case - k is integer if (kMin === kMax) { return vMin; } return Math.round((k - kMin) * vMax + (kMax - k) * vMin); }; var assign = function(pos, offset, x, xMin, xMax, y, yMin, yMax) { var posMin = (yMin * wSrc + xMin) * 4 + offset; var posMax = (yMin * wSrc + xMax) * 4 + offset; var vMin = interpolate(x, xMin, bufSrc[posMin], xMax, bufSrc[posMax]); // special case, y is integer if (yMax === yMin) { bufDst[pos+offset] = vMin; } else { posMin = (yMax * wSrc + xMin) * 4 + offset; posMax = (yMax * wSrc + xMax) * 4 + offset; var vMax = interpolate(x, xMin, bufSrc[posMin], xMax, bufSrc[posMax]); bufDst[pos+offset] = interpolate(y, yMin, vMin, yMax, vMax); } } for (var i = 0; i < hDst; i++) { for (var j = 0; j < wDst; j++) { var posDst = (i * wDst + j) * 4; // x & y in src coordinates var x = j * wSrc / wDst; var xMin = Math.floor(x); var xMax = Math.min(Math.ceil(x), wSrc-1); var y = i * hSrc / hDst; var yMin = Math.floor(y); var yMax = Math.min(Math.ceil(y), hSrc-1); assign(posDst, 0, x, xMin, xMax, y, yMin, yMax); assign(posDst, 1, x, xMin, xMax, y, yMin, yMax); assign(posDst, 2, x, xMin, xMax, y, yMin, yMax); assign(posDst, 3, x, xMin, xMax, y, yMin, yMax); } } }, _interpolate2D: function(src, dst, options, interpolate) { var bufSrc = src.data; var bufDst = dst.data; var wSrc = src.width; var hSrc = src.height; //console.log("wSrc="+wSrc + ", hSrc="+hSrc + ", srcLen="+bufSrc.length); var wDst = dst.width; var hDst = dst.height; //console.log("wDst="+wDst + ", hDst="+hDst + ", dstLen="+bufDst.length); // when dst smaller than src/2, interpolate first to a multiple between 0.5 and 1.0 src, then sum squares var wM = Math.max(1, Math.floor(wSrc / wDst)); var wDst2 = wDst * wM; var hM = Math.max(1, Math.floor(hSrc / hDst)); var hDst2 = hDst * hM; //console.log("wM="+wM + ", wDst2="+wDst2 + ", hM="+hM + ", hDst2="+hDst2); // =========================================================== // Pass 1 - interpolate rows // buf1 has width of dst2 and height of src var buf1 = new Buffer(wDst2 * hSrc * 4); for (var i = 0; i < hSrc; i++) { for (var j = 0; j < wDst2; j++) { // i in src coords, j in dst coords // calculate x in src coords // this interpolation requires 4 sample points and the two inner ones must be real // the outer points can be fudged for the edges. // therefore (wSrc-1)/wDst2 var x = j * (wSrc-1) / wDst2; var xPos = Math.floor(x); var t = x - xPos; var srcPos = (i * wSrc + xPos) * 4; var buf1Pos = (i * wDst2 + j) * 4; for (var k = 0; k < 4; k++) { var kPos = srcPos + k; var x0 = (xPos > 0) ? bufSrc[kPos - 4] : 2*bufSrc[kPos]-bufSrc[kPos+4]; var x1 = bufSrc[kPos]; var x2 = bufSrc[kPos + 4]; var x3 = (xPos < wSrc - 2) ? bufSrc[kPos + 8] : 2*bufSrc[kPos + 4]-bufSrc[kPos]; buf1[buf1Pos+k] = interpolate(x0,x1,x2,x3,t); } } } //this._writeFile(wDst2, hSrc, buf1, "out/buf1.jpg"); // =========================================================== // Pass 2 - interpolate columns // buf2 has width and height of dst2 var buf2 = new Buffer(wDst2 * hDst2 * 4); for (var i = 0; i < hDst2; i++) { for (var j = 0; j < wDst2; j++) { // i&j in dst2 coords // calculate y in buf1 coords // this interpolation requires 4 sample points and the two inner ones must be real // the outer points can be fudged for the edges. // therefore (hSrc-1)/hDst2 var y = i * (hSrc-1) / hDst2; var yPos = Math.floor(y); var t = y - yPos; var buf1Pos = (yPos * wDst2 + j) * 4; var buf2Pos = (i * wDst2 + j) * 4; for (var k = 0; k < 4; k++) { var kPos = buf1Pos + k; var y0 = (yPos > 0) ? buf1[kPos - wDst2*4] : 2*buf1[kPos]-buf1[kPos + wDst2*4]; var y1 = buf1[kPos]; var y2 = buf1[kPos + wDst2*4]; var y3 = (yPos < hSrc-2) ? buf1[kPos + wDst2*8] : 2*buf1[kPos + wDst2*4]-buf1[kPos]; buf2[buf2Pos + k] = interpolate(y0,y1,y2,y3,t); } } } //this._writeFile(wDst2, hDst2, buf2, "out/buf2.jpg"); // =========================================================== // Pass 3 - scale to dst var m = wM * hM; if (m > 1) { for (var i = 0; i < hDst; i++) { for (var j = 0; j < wDst; j++) { // i&j in dst bounded coords var r = 0; var g = 0; var b = 0; var a = 0; var realColors = 0; for (var y = 0; y < hM; y++) { var yPos = i * hM + y; for (var x = 0; x < wM; x++) { var xPos = j * wM + x; var xyPos = (yPos * wDst2 + xPos) * 4; var pixelAplha = buf2[xyPos+3]; if (pixelAplha) { r += buf2[xyPos]; g += buf2[xyPos+1]; b += buf2[xyPos+2]; realColors++; } a += pixelAplha; } } var pos = (i*wDst + j) * 4; bufDst[pos] = realColors ? Math.round(r / realColors) : 0; bufDst[pos+1] = realColors ? Math.round(g / realColors) : 0; bufDst[pos+2] = realColors ? Math.round(b / realColors) : 0; bufDst[pos+3] = Math.round(a / m); } } } else { // replace dst buffer with buf2 dst.data = buf2; } }, bicubicInterpolation: function(src, dst, options) { var interpolateCubic = function(x0, x1, x2, x3, t) { var a0 = x3 - x2 - x0 + x1; var a1 = x0 - x1 - a0; var a2 = x2 - x0; var a3 = x1; return Math.max(0,Math.min(255,(a0 * (t * t * t)) + (a1 * (t * t)) + (a2 * t) + (a3))); } return this._interpolate2D(src, dst, options, interpolateCubic); }, hermiteInterpolation: function(src, dst, options) { var interpolateHermite = function(x0, x1, x2, x3, t) { var c0 = x1; var c1 = 0.5 * (x2 - x0); var c2 = x0 - (2.5 * x1) + (2 * x2) - (0.5 * x3); var c3 = (0.5 * (x3 - x0)) + (1.5 * (x1 - x2)); return Math.max(0,Math.min(255,Math.round((((((c3 * t) + c2) * t) + c1) * t) + c0))); } return this._interpolate2D(src, dst, options, interpolateHermite); }, bezierInterpolation: function(src, dst, options) { // between 2 points y(n), y(n+1), use next points out, y(n-1), y(n+2) // to predict control points (a & b) to be placed at n+0.5 // ya(n) = y(n) + (y(n+1)-y(n-1))/4 // yb(n) = y(n+1) - (y(n+2)-y(n))/4 // then use std bezier to interpolate [n,n+1) // y(n+t) = y(n)*(1-t)^3 + 3 * ya(n)*(1-t)^2*t + 3 * yb(n)*(1-t)*t^2 + y(n+1)*t^3 // note the 3* factor for the two control points // for edge cases, can choose: // y(-1) = y(0) - 2*(y(1)-y(0)) // y(w) = y(w-1) + 2*(y(w-1)-y(w-2)) // but can go with y(-1) = y(0) and y(w) = y(w-1) var interpolateBezier = function(x0, x1, x2, x3, t) { // x1, x2 are the knots, use x0 and x3 to calculate control points var cp1 = x1 + (x2-x0)/4; var cp2 = x2 - (x3-x1)/4; var nt = 1-t; var c0 = x1 * nt * nt * nt; var c1 = 3 * cp1 * nt * nt * t; var c2 = 3 * cp2 * nt * t * t; var c3 = x2 * t * t * t; return Math.max(0,Math.min(255,Math.round(c0 + c1 + c2 + c3))); } return this._interpolate2D(src, dst, options, interpolateBezier); } }