/* -*- tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- / /* vim: set shiftwidth=2 tabstop=2 autoindent cindent expandtab: */ /* Copyright 2011 notmasteryet Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ // - The JPEG specification can be found in the ITU CCITT Recommendation T.81 // (www.w3.org/Graphics/JPEG/itu-t81.pdf) // - The JFIF specification can be found in the JPEG File Interchange Format // (www.w3.org/Graphics/JPEG/jfif3.pdf) // - The Adobe Application-Specific JPEG markers in the Supporting the DCT Filters // in PostScript Level 2, Technical Note #5116 // (partners.adobe.com/public/developer/en/ps/sdk/5116.DCT_Filter.pdf) var JpegImage = (function jpegImage() { "use strict"; var dctZigZag = new Int32Array([ 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63 ]); var dctCos1 = 4017 // cos(pi/16) var dctSin1 = 799 // sin(pi/16) var dctCos3 = 3406 // cos(3*pi/16) var dctSin3 = 2276 // sin(3*pi/16) var dctCos6 = 1567 // cos(6*pi/16) var dctSin6 = 3784 // sin(6*pi/16) var dctSqrt2 = 5793 // sqrt(2) var dctSqrt1d2 = 2896 // sqrt(2) / 2 function constructor() { } function buildHuffmanTable(codeLengths, values) { var k = 0, code = [], i, j, length = 16; while (length > 0 && !codeLengths[length - 1]) length--; code.push({children: [], index: 0}); var p = code[0], q; for (i = 0; i < length; i++) { for (j = 0; j < codeLengths[i]; j++) { p = code.pop(); p.children[p.index] = values[k]; while (p.index > 0) { p = code.pop(); } p.index++; code.push(p); while (code.length <= i) { code.push(q = {children: [], index: 0}); p.children[p.index] = q.children; p = q; } k++; } if (i + 1 < length) { // p here points to last code code.push(q = {children: [], index: 0}); p.children[p.index] = q.children; p = q; } } return code[0].children; } function decodeScan(data, offset, frame, components, resetInterval, spectralStart, spectralEnd, successivePrev, successive) { var precision = frame.precision; var samplesPerLine = frame.samplesPerLine; var scanLines = frame.scanLines; var mcusPerLine = frame.mcusPerLine; var progressive = frame.progressive; var maxH = frame.maxH, maxV = frame.maxV; var startOffset = offset, bitsData = 0, bitsCount = 0; function readBit() { if (bitsCount > 0) { bitsCount--; return (bitsData >> bitsCount) & 1; } bitsData = data[offset++]; if (bitsData == 0xFF) { var nextByte = data[offset++]; if (nextByte) { throw new Error("unexpected marker: " + ((bitsData << 8) | nextByte).toString(16)); } // unstuff 0 } bitsCount = 7; return bitsData >>> 7; } function decodeHuffman(tree) { var node = tree, bit; while ((bit = readBit()) !== null) { node = node[bit]; if (typeof node === 'number') return node; if (typeof node !== 'object') throw new Error("invalid huffman sequence"); } return null; } function receive(length) { var n = 0; while (length > 0) { var bit = readBit(); if (bit === null) return; n = (n << 1) | bit; length--; } return n; } function receiveAndExtend(length) { var n = receive(length); if (n >= 1 << (length - 1)) return n; return n + (-1 << length) + 1; } function decodeBaseline(component, zz) { var t = decodeHuffman(component.huffmanTableDC); var diff = t === 0 ? 0 : receiveAndExtend(t); zz[0]= (component.pred += diff); var k = 1; while (k < 64) { var rs = decodeHuffman(component.huffmanTableAC); var s = rs & 15, r = rs >> 4; if (s === 0) { if (r < 15) break; k += 16; continue; } k += r; var z = dctZigZag[k]; zz[z] = receiveAndExtend(s); k++; } } function decodeDCFirst(component, zz) { var t = decodeHuffman(component.huffmanTableDC); var diff = t === 0 ? 0 : (receiveAndExtend(t) << successive); zz[0] = (component.pred += diff); } function decodeDCSuccessive(component, zz) { zz[0] |= readBit() << successive; } var eobrun = 0; function decodeACFirst(component, zz) { if (eobrun > 0) { eobrun--; return; } var k = spectralStart, e = spectralEnd; while (k <= e) { var rs = decodeHuffman(component.huffmanTableAC); var s = rs & 15, r = rs >> 4; if (s === 0) { if (r < 15) { eobrun = receive(r) + (1 << r) - 1; break; } k += 16; continue; } k += r; var z = dctZigZag[k]; zz[z] = receiveAndExtend(s) * (1 << successive); k++; } } var successiveACState = 0, successiveACNextValue; function decodeACSuccessive(component, zz) { var k = spectralStart, e = spectralEnd, r = 0; while (k <= e) { var z = dctZigZag[k]; var direction = zz[z] < 0 ? -1 : 1; switch (successiveACState) { case 0: // initial state var rs = decodeHuffman(component.huffmanTableAC); var s = rs & 15, r = rs >> 4; if (s === 0) { if (r < 15) { eobrun = receive(r) + (1 << r); successiveACState = 4; } else { r = 16; successiveACState = 1; } } else { if (s !== 1) throw new Error("invalid ACn encoding"); successiveACNextValue = receiveAndExtend(s); successiveACState = r ? 2 : 3; } continue; case 1: // skipping r zero items case 2: if (zz[z]) zz[z] += (readBit() << successive) * direction; else { r--; if (r === 0) successiveACState = successiveACState == 2 ? 3 : 0; } break; case 3: // set value for a zero item if (zz[z]) zz[z] += (readBit() << successive) * direction; else { zz[z] = successiveACNextValue << successive; successiveACState = 0; } break; case 4: // eob if (zz[z]) zz[z] += (readBit() << successive) * direction; break; } k++; } if (successiveACState === 4) { eobrun--; if (eobrun === 0) successiveACState = 0; } } function decodeMcu(component, decode, mcu, row, col) { var mcuRow = (mcu / mcusPerLine) | 0; var mcuCol = mcu % mcusPerLine; var blockRow = mcuRow * component.v + row; var blockCol = mcuCol * component.h + col; decode(component, component.blocks[blockRow][blockCol]); } function decodeBlock(component, decode, mcu) { var blockRow = (mcu / component.blocksPerLine) | 0; var blockCol = mcu % component.blocksPerLine; decode(component, component.blocks[blockRow][blockCol]); } var componentsLength = components.length; var component, i, j, k, n; var decodeFn; if (progressive) { if (spectralStart === 0) decodeFn = successivePrev === 0 ? decodeDCFirst : decodeDCSuccessive; else decodeFn = successivePrev === 0 ? decodeACFirst : decodeACSuccessive; } else { decodeFn = decodeBaseline; } var mcu = 0, marker; var mcuExpected; if (componentsLength == 1) { mcuExpected = components[0].blocksPerLine * components[0].blocksPerColumn; } else { mcuExpected = mcusPerLine * frame.mcusPerColumn; } if (!resetInterval) resetInterval = mcuExpected; var h, v; while (mcu < mcuExpected) { // reset interval stuff for (i = 0; i < componentsLength; i++) components[i].pred = 0; eobrun = 0; if (componentsLength == 1) { component = components[0]; for (n = 0; n < resetInterval; n++) { decodeBlock(component, decodeFn, mcu); mcu++; } } else { for (n = 0; n < resetInterval; n++) { for (i = 0; i < componentsLength; i++) { component = components[i]; h = component.h; v = component.v; for (j = 0; j < v; j++) { for (k = 0; k < h; k++) { decodeMcu(component, decodeFn, mcu, j, k); } } } mcu++; // If we've reached our expected MCU's, stop decoding if (mcu === mcuExpected) break; } } // find marker bitsCount = 0; marker = (data[offset] << 8) | data[offset + 1]; if (marker < 0xFF00) { throw new Error("marker was not found"); } if (marker >= 0xFFD0 && marker <= 0xFFD7) { // RSTx offset += 2; } else break; } return offset - startOffset; } function buildComponentData(frame, component) { var lines = []; var blocksPerLine = component.blocksPerLine; var blocksPerColumn = component.blocksPerColumn; var samplesPerLine = blocksPerLine << 3; var R = new Int32Array(64), r = new Uint8Array(64); // A port of poppler's IDCT method which in turn is taken from: // Christoph Loeffler, Adriaan Ligtenberg, George S. Moschytz, // "Practical Fast 1-D DCT Algorithms with 11 Multiplications", // IEEE Intl. Conf. on Acoustics, Speech & Signal Processing, 1989, // 988-991. function quantizeAndInverse(zz, dataOut, dataIn) { var qt = component.quantizationTable; var v0, v1, v2, v3, v4, v5, v6, v7, t; var p = dataIn; var i; // dequant for (i = 0; i < 64; i++) p[i] = zz[i] * qt[i]; // inverse DCT on rows for (i = 0; i < 8; ++i) { var row = 8 * i; // check for all-zero AC coefficients if (p[1 + row] == 0 && p[2 + row] == 0 && p[3 + row] == 0 && p[4 + row] == 0 && p[5 + row] == 0 && p[6 + row] == 0 && p[7 + row] == 0) { t = (dctSqrt2 * p[0 + row] + 512) >> 10; p[0 + row] = t; p[1 + row] = t; p[2 + row] = t; p[3 + row] = t; p[4 + row] = t; p[5 + row] = t; p[6 + row] = t; p[7 + row] = t; continue; } // stage 4 v0 = (dctSqrt2 * p[0 + row] + 128) >> 8; v1 = (dctSqrt2 * p[4 + row] + 128) >> 8; v2 = p[2 + row]; v3 = p[6 + row]; v4 = (dctSqrt1d2 * (p[1 + row] - p[7 + row]) + 128) >> 8; v7 = (dctSqrt1d2 * (p[1 + row] + p[7 + row]) + 128) >> 8; v5 = p[3 + row] << 4; v6 = p[5 + row] << 4; // stage 3 t = (v0 - v1+ 1) >> 1; v0 = (v0 + v1 + 1) >> 1; v1 = t; t = (v2 * dctSin6 + v3 * dctCos6 + 128) >> 8; v2 = (v2 * dctCos6 - v3 * dctSin6 + 128) >> 8; v3 = t; t = (v4 - v6 + 1) >> 1; v4 = (v4 + v6 + 1) >> 1; v6 = t; t = (v7 + v5 + 1) >> 1; v5 = (v7 - v5 + 1) >> 1; v7 = t; // stage 2 t = (v0 - v3 + 1) >> 1; v0 = (v0 + v3 + 1) >> 1; v3 = t; t = (v1 - v2 + 1) >> 1; v1 = (v1 + v2 + 1) >> 1; v2 = t; t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12; v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12; v7 = t; t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12; v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12; v6 = t; // stage 1 p[0 + row] = v0 + v7; p[7 + row] = v0 - v7; p[1 + row] = v1 + v6; p[6 + row] = v1 - v6; p[2 + row] = v2 + v5; p[5 + row] = v2 - v5; p[3 + row] = v3 + v4; p[4 + row] = v3 - v4; } // inverse DCT on columns for (i = 0; i < 8; ++i) { var col = i; // check for all-zero AC coefficients if (p[1*8 + col] == 0 && p[2*8 + col] == 0 && p[3*8 + col] == 0 && p[4*8 + col] == 0 && p[5*8 + col] == 0 && p[6*8 + col] == 0 && p[7*8 + col] == 0) { t = (dctSqrt2 * dataIn[i+0] + 8192) >> 14; p[0*8 + col] = t; p[1*8 + col] = t; p[2*8 + col] = t; p[3*8 + col] = t; p[4*8 + col] = t; p[5*8 + col] = t; p[6*8 + col] = t; p[7*8 + col] = t; continue; } // stage 4 v0 = (dctSqrt2 * p[0*8 + col] + 2048) >> 12; v1 = (dctSqrt2 * p[4*8 + col] + 2048) >> 12; v2 = p[2*8 + col]; v3 = p[6*8 + col]; v4 = (dctSqrt1d2 * (p[1*8 + col] - p[7*8 + col]) + 2048) >> 12; v7 = (dctSqrt1d2 * (p[1*8 + col] + p[7*8 + col]) + 2048) >> 12; v5 = p[3*8 + col]; v6 = p[5*8 + col]; // stage 3 t = (v0 - v1 + 1) >> 1; v0 = (v0 + v1 + 1) >> 1; v1 = t; t = (v2 * dctSin6 + v3 * dctCos6 + 2048) >> 12; v2 = (v2 * dctCos6 - v3 * dctSin6 + 2048) >> 12; v3 = t; t = (v4 - v6 + 1) >> 1; v4 = (v4 + v6 + 1) >> 1; v6 = t; t = (v7 + v5 + 1) >> 1; v5 = (v7 - v5 + 1) >> 1; v7 = t; // stage 2 t = (v0 - v3 + 1) >> 1; v0 = (v0 + v3 + 1) >> 1; v3 = t; t = (v1 - v2 + 1) >> 1; v1 = (v1 + v2 + 1) >> 1; v2 = t; t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12; v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12; v7 = t; t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12; v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12; v6 = t; // stage 1 p[0*8 + col] = v0 + v7; p[7*8 + col] = v0 - v7; p[1*8 + col] = v1 + v6; p[6*8 + col] = v1 - v6; p[2*8 + col] = v2 + v5; p[5*8 + col] = v2 - v5; p[3*8 + col] = v3 + v4; p[4*8 + col] = v3 - v4; } // convert to 8-bit integers for (i = 0; i < 64; ++i) { var sample = 128 + ((p[i] + 8) >> 4); dataOut[i] = sample < 0 ? 0 : sample > 0xFF ? 0xFF : sample; } } var i, j; for (var blockRow = 0; blockRow < blocksPerColumn; blockRow++) { var scanLine = blockRow << 3; for (i = 0; i < 8; i++) lines.push(new Uint8Array(samplesPerLine)); for (var blockCol = 0; blockCol < blocksPerLine; blockCol++) { quantizeAndInverse(component.blocks[blockRow][blockCol], r, R); var offset = 0, sample = blockCol << 3; for (j = 0; j < 8; j++) { var line = lines[scanLine + j]; for (i = 0; i < 8; i++) line[sample + i] = r[offset++]; } } } return lines; } function clampTo8bit(a) { return a < 0 ? 0 : a > 255 ? 255 : a; } constructor.prototype = { load: function load(path) { var xhr = new XMLHttpRequest(); xhr.open("GET", path, true); xhr.responseType = "arraybuffer"; xhr.onload = (function() { // TODO catch parse error var data = new Uint8Array(xhr.response || xhr.mozResponseArrayBuffer); this.parse(data); if (this.onload) this.onload(); }).bind(this); xhr.send(null); }, parse: function parse(data) { var offset = 0, length = data.length; function readUint16() { var value = (data[offset] << 8) | data[offset + 1]; offset += 2; return value; } function readDataBlock() { var length = readUint16(); var array = data.subarray(offset, offset + length - 2); offset += array.length; return array; } function prepareComponents(frame) { var maxH = 0, maxV = 0; var component, componentId; for (componentId in frame.components) { if (frame.components.hasOwnProperty(componentId)) { component = frame.components[componentId]; if (maxH < component.h) maxH = component.h; if (maxV < component.v) maxV = component.v; } } var mcusPerLine = Math.ceil(frame.samplesPerLine / 8 / maxH); var mcusPerColumn = Math.ceil(frame.scanLines / 8 / maxV); for (componentId in frame.components) { if (frame.components.hasOwnProperty(componentId)) { component = frame.components[componentId]; var blocksPerLine = Math.ceil(Math.ceil(frame.samplesPerLine / 8) * component.h / maxH); var blocksPerColumn = Math.ceil(Math.ceil(frame.scanLines / 8) * component.v / maxV); var blocksPerLineForMcu = mcusPerLine * component.h; var blocksPerColumnForMcu = mcusPerColumn * component.v; var blocks = []; for (var i = 0; i < blocksPerColumnForMcu; i++) { var row = []; for (var j = 0; j < blocksPerLineForMcu; j++) row.push(new Int32Array(64)); blocks.push(row); } component.blocksPerLine = blocksPerLine; component.blocksPerColumn = blocksPerColumn; component.blocks = blocks; } } frame.maxH = maxH; frame.maxV = maxV; frame.mcusPerLine = mcusPerLine; frame.mcusPerColumn = mcusPerColumn; } var jfif = null; var adobe = null; var pixels = null; var frame, resetInterval; var quantizationTables = [], frames = []; var huffmanTablesAC = [], huffmanTablesDC = []; var fileMarker = readUint16(); if (fileMarker != 0xFFD8) { // SOI (Start of Image) throw new Error("SOI not found"); } fileMarker = readUint16(); while (fileMarker != 0xFFD9) { // EOI (End of image) var i, j, l; switch(fileMarker) { case 0xFF00: break; case 0xFFE0: // APP0 (Application Specific) case 0xFFE1: // APP1 case 0xFFE2: // APP2 case 0xFFE3: // APP3 case 0xFFE4: // APP4 case 0xFFE5: // APP5 case 0xFFE6: // APP6 case 0xFFE7: // APP7 case 0xFFE8: // APP8 case 0xFFE9: // APP9 case 0xFFEA: // APP10 case 0xFFEB: // APP11 case 0xFFEC: // APP12 case 0xFFED: // APP13 case 0xFFEE: // APP14 case 0xFFEF: // APP15 case 0xFFFE: // COM (Comment) var appData = readDataBlock(); if (fileMarker === 0xFFE0) { if (appData[0] === 0x4A && appData[1] === 0x46 && appData[2] === 0x49 && appData[3] === 0x46 && appData[4] === 0) { // 'JFIF\x00' jfif = { version: { major: appData[5], minor: appData[6] }, densityUnits: appData[7], xDensity: (appData[8] << 8) | appData[9], yDensity: (appData[10] << 8) | appData[11], thumbWidth: appData[12], thumbHeight: appData[13], thumbData: appData.subarray(14, 14 + 3 * appData[12] * appData[13]) }; } } // TODO APP1 - Exif if (fileMarker === 0xFFEE) { if (appData[0] === 0x41 && appData[1] === 0x64 && appData[2] === 0x6F && appData[3] === 0x62 && appData[4] === 0x65 && appData[5] === 0) { // 'Adobe\x00' adobe = { version: appData[6], flags0: (appData[7] << 8) | appData[8], flags1: (appData[9] << 8) | appData[10], transformCode: appData[11] }; } } break; case 0xFFDB: // DQT (Define Quantization Tables) var quantizationTablesLength = readUint16(); var quantizationTablesEnd = quantizationTablesLength + offset - 2; while (offset < quantizationTablesEnd) { var quantizationTableSpec = data[offset++]; var tableData = new Int32Array(64); if ((quantizationTableSpec >> 4) === 0) { // 8 bit values for (j = 0; j < 64; j++) { var z = dctZigZag[j]; tableData[z] = data[offset++]; } } else if ((quantizationTableSpec >> 4) === 1) { //16 bit for (j = 0; j < 64; j++) { var z = dctZigZag[j]; tableData[z] = readUint16(); } } else throw new Error("DQT: invalid table spec"); quantizationTables[quantizationTableSpec & 15] = tableData; } break; case 0xFFC0: // SOF0 (Start of Frame, Baseline DCT) case 0xFFC1: // SOF1 (Start of Frame, Extended DCT) case 0xFFC2: // SOF2 (Start of Frame, Progressive DCT) readUint16(); // skip data length frame = {}; frame.extended = (fileMarker === 0xFFC1); frame.progressive = (fileMarker === 0xFFC2); frame.precision = data[offset++]; frame.scanLines = readUint16(); frame.samplesPerLine = readUint16(); frame.components = {}; frame.componentsOrder = []; var componentsCount = data[offset++], componentId; var maxH = 0, maxV = 0; for (i = 0; i < componentsCount; i++) { componentId = data[offset]; var h = data[offset + 1] >> 4; var v = data[offset + 1] & 15; var qId = data[offset + 2]; frame.componentsOrder.push(componentId); frame.components[componentId] = { h: h, v: v, quantizationIdx: qId }; offset += 3; } prepareComponents(frame); frames.push(frame); break; case 0xFFC4: // DHT (Define Huffman Tables) var huffmanLength = readUint16(); for (i = 2; i < huffmanLength;) { var huffmanTableSpec = data[offset++]; var codeLengths = new Uint8Array(16); var codeLengthSum = 0; for (j = 0; j < 16; j++, offset++) codeLengthSum += (codeLengths[j] = data[offset]); var huffmanValues = new Uint8Array(codeLengthSum); for (j = 0; j < codeLengthSum; j++, offset++) huffmanValues[j] = data[offset]; i += 17 + codeLengthSum; ((huffmanTableSpec >> 4) === 0 ? huffmanTablesDC : huffmanTablesAC)[huffmanTableSpec & 15] = buildHuffmanTable(codeLengths, huffmanValues); } break; case 0xFFDD: // DRI (Define Restart Interval) readUint16(); // skip data length resetInterval = readUint16(); break; case 0xFFDA: // SOS (Start of Scan) var scanLength = readUint16(); var selectorsCount = data[offset++]; var components = [], component; for (i = 0; i < selectorsCount; i++) { component = frame.components[data[offset++]]; var tableSpec = data[offset++]; component.huffmanTableDC = huffmanTablesDC[tableSpec >> 4]; component.huffmanTableAC = huffmanTablesAC[tableSpec & 15]; components.push(component); } var spectralStart = data[offset++]; var spectralEnd = data[offset++]; var successiveApproximation = data[offset++]; var processed = decodeScan(data, offset, frame, components, resetInterval, spectralStart, spectralEnd, successiveApproximation >> 4, successiveApproximation & 15); offset += processed; break; case 0xFFFF: // Fill bytes if (data[offset] !== 0xFF) { // Avoid skipping a valid marker. offset--; } break; default: if (data[offset - 3] == 0xFF && data[offset - 2] >= 0xC0 && data[offset - 2] <= 0xFE) { // could be incorrect encoding -- last 0xFF byte of the previous // block was eaten by the encoder offset -= 3; break; } throw new Error("unknown JPEG marker " + fileMarker.toString(16)); } fileMarker = readUint16(); } if (frames.length != 1) throw new Error("only single frame JPEGs supported"); // set each frame's components quantization table for (var i = 0; i < frames.length; i++) { var cp = frames[i].components; for (var j in cp) { cp[j].quantizationTable = quantizationTables[cp[j].quantizationIdx]; delete cp[j].quantizationIdx; } } this.width = frame.samplesPerLine; this.height = frame.scanLines; this.jfif = jfif; this.adobe = adobe; this.components = []; for (var i = 0; i < frame.componentsOrder.length; i++) { var component = frame.components[frame.componentsOrder[i]]; this.components.push({ lines: buildComponentData(frame, component), scaleX: component.h / frame.maxH, scaleY: component.v / frame.maxV }); } }, getData: function getData(width, height) { var scaleX = this.width / width, scaleY = this.height / height; var component1, component2, component3, component4; var component1Line, component2Line, component3Line, component4Line; var x, y; var offset = 0; var Y, Cb, Cr, K, C, M, Ye, R, G, B; var colorTransform; var dataLength = width * height * this.components.length; var data = new Uint8Array(dataLength); switch (this.components.length) { case 1: component1 = this.components[0]; for (y = 0; y < height; y++) { component1Line = component1.lines[0 | (y * component1.scaleY * scaleY)]; for (x = 0; x < width; x++) { Y = component1Line[0 | (x * component1.scaleX * scaleX)]; data[offset++] = Y; } } break; case 2: // PDF might compress two component data in custom colorspace component1 = this.components[0]; component2 = this.components[1]; for (y = 0; y < height; y++) { component1Line = component1.lines[0 | (y * component1.scaleY * scaleY)]; component2Line = component2.lines[0 | (y * component2.scaleY * scaleY)]; for (x = 0; x < width; x++) { Y = component1Line[0 | (x * component1.scaleX * scaleX)]; data[offset++] = Y; Y = component2Line[0 | (x * component2.scaleX * scaleX)]; data[offset++] = Y; } } break; case 3: // The default transform for three components is true colorTransform = true; // The adobe transform marker overrides any previous setting if (this.adobe && this.adobe.transformCode) colorTransform = true; else if (typeof this.colorTransform !== 'undefined') colorTransform = !!this.colorTransform; component1 = this.components[0]; component2 = this.components[1]; component3 = this.components[2]; for (y = 0; y < height; y++) { component1Line = component1.lines[0 | (y * component1.scaleY * scaleY)]; component2Line = component2.lines[0 | (y * component2.scaleY * scaleY)]; component3Line = component3.lines[0 | (y * component3.scaleY * scaleY)]; for (x = 0; x < width; x++) { if (!colorTransform) { R = component1Line[0 | (x * component1.scaleX * scaleX)]; G = component2Line[0 | (x * component2.scaleX * scaleX)]; B = component3Line[0 | (x * component3.scaleX * scaleX)]; } else { Y = component1Line[0 | (x * component1.scaleX * scaleX)]; Cb = component2Line[0 | (x * component2.scaleX * scaleX)]; Cr = component3Line[0 | (x * component3.scaleX * scaleX)]; R = clampTo8bit(Y + 1.402 * (Cr - 128)); G = clampTo8bit(Y - 0.3441363 * (Cb - 128) - 0.71413636 * (Cr - 128)); B = clampTo8bit(Y + 1.772 * (Cb - 128)); } data[offset++] = R; data[offset++] = G; data[offset++] = B; } } break; case 4: if (!this.adobe) throw new Error('Unsupported color mode (4 components)'); // The default transform for four components is false colorTransform = false; // The adobe transform marker overrides any previous setting if (this.adobe && this.adobe.transformCode) colorTransform = true; else if (typeof this.colorTransform !== 'undefined') colorTransform = !!this.colorTransform; component1 = this.components[0]; component2 = this.components[1]; component3 = this.components[2]; component4 = this.components[3]; for (y = 0; y < height; y++) { component1Line = component1.lines[0 | (y * component1.scaleY * scaleY)]; component2Line = component2.lines[0 | (y * component2.scaleY * scaleY)]; component3Line = component3.lines[0 | (y * component3.scaleY * scaleY)]; component4Line = component4.lines[0 | (y * component4.scaleY * scaleY)]; for (x = 0; x < width; x++) { if (!colorTransform) { C = component1Line[0 | (x * component1.scaleX * scaleX)]; M = component2Line[0 | (x * component2.scaleX * scaleX)]; Ye = component3Line[0 | (x * component3.scaleX * scaleX)]; K = component4Line[0 | (x * component4.scaleX * scaleX)]; } else { Y = component1Line[0 | (x * component1.scaleX * scaleX)]; Cb = component2Line[0 | (x * component2.scaleX * scaleX)]; Cr = component3Line[0 | (x * component3.scaleX * scaleX)]; K = component4Line[0 | (x * component4.scaleX * scaleX)]; C = 255 - clampTo8bit(Y + 1.402 * (Cr - 128)); M = 255 - clampTo8bit(Y - 0.3441363 * (Cb - 128) - 0.71413636 * (Cr - 128)); Ye = 255 - clampTo8bit(Y + 1.772 * (Cb - 128)); } data[offset++] = 255-C; data[offset++] = 255-M; data[offset++] = 255-Ye; data[offset++] = 255-K; } } break; default: throw new Error('Unsupported color mode'); } return data; }, copyToImageData: function copyToImageData(imageData) { var width = imageData.width, height = imageData.height; var imageDataArray = imageData.data; var data = this.getData(width, height); var i = 0, j = 0, x, y; var Y, K, C, M, R, G, B; switch (this.components.length) { case 1: for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { Y = data[i++]; imageDataArray[j++] = Y; imageDataArray[j++] = Y; imageDataArray[j++] = Y; imageDataArray[j++] = 255; } } break; case 3: for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { R = data[i++]; G = data[i++]; B = data[i++]; imageDataArray[j++] = R; imageDataArray[j++] = G; imageDataArray[j++] = B; imageDataArray[j++] = 255; } } break; case 4: for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { C = data[i++]; M = data[i++]; Y = data[i++]; K = data[i++]; R = 255 - clampTo8bit(C * (1 - K / 255) + K); G = 255 - clampTo8bit(M * (1 - K / 255) + K); B = 255 - clampTo8bit(Y * (1 - K / 255) + K); imageDataArray[j++] = R; imageDataArray[j++] = G; imageDataArray[j++] = B; imageDataArray[j++] = 255; } } break; default: throw new Error('Unsupported color mode'); } } }; return constructor; })(); module.exports = decode; function decode(jpegData, opts) { var defaultOpts = { useTArray: false, colorTransform: true }; if (opts) { if (typeof opts === 'object') { opts = { useTArray: (typeof opts.useTArray === 'undefined' ? defaultOpts.useTArray : opts.useTArray), colorTransform: (typeof opts.colorTransform === 'undefined' ? defaultOpts.colorTransform : opts.colorTransform) }; } else { // backwards compatiblity, before 0.3.5, we only had the useTArray param opts = defaultOpts; opts.useTArray = true; } } else { opts = defaultOpts; } var arr = new Uint8Array(jpegData); var decoder = new JpegImage(); decoder.parse(arr); decoder.colorTransform = opts.colorTransform; var image = { width: decoder.width, height: decoder.height, data: opts.useTArray ? new Uint8Array(decoder.width * decoder.height * 4) : new Buffer(decoder.width * decoder.height * 4) }; decoder.copyToImageData(image); return image; }